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Directed self-avoiding walks in random media
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Two types of directed self-avoiding walks~SAW’s!, namely, three-choice directed SAW and outwardly
directed SAW, have been studied on infinite percolation clusters on the square lattice in two dimensions. The
walks on the percolation clusters are generated via a Monte Carlo technique. The longitudinal extensionRN

and the transverse fluctuationWN have been measured as a function of the number of stepsN. Slight swelling
is observed in the longitudinal direction on the random lattices. A crossover from shrinking to swelling of the
transverse fluctuations is found at a certain lengthNc of the walks. The exponents related to the transverse
fluctuations are seen to be unchanged in the random media even as the percolation threshold is reached. The
scaling function form of the extensions are verified.
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Directed polymers in random environments have versa
applications ranging from growing interfaces to spin glas
to flux lines in highTc superconductors. The equilibrium
properties of linear polymers are well-studied using se
avoiding walk ~SAW! models@1#. Properties of SAW’s on
random lattices have also been studied extensively@2#. Di-
rected polymers are studied using directed SAW mod
Two different directed self-avoiding walks~DSAW’s!, three-
choice directed self-avoiding walks~DSAW3’s! @3#, and out-
wardly directed self-avoiding walks~ODSAW’s! @4,5#, are
considered here in random media in two dimensions. Fig
1~a! represents the DSAW3, and Fig. 1~b! represents the
ODSAW, on the regular square lattice. There is considera
earlier study of DSAW3’s@3#. The ODSAW of Fig. 1~b! is
less well studied and is imagined to be grown step-by-s
such that no step is taken in a direction towards a site alre
visited. In Fig. 1~b!, the step to the site represented by
open circle is not allowed. Hence ODSAW’s are ‘‘se
repelling.’’ If the origin of the walk is changed from th
starting point to the end point, the walk may not satisfy t
self-repelling condition@step fromX to Y in Fig. 1~b! is not
allowed when it starts from the end#. It is then an irreversible
walk whereas DSAW’s generally are not. DSAW’s have
bias of a fixed direction with respect to the embedded sp
whereas ODSAW’s have a weaker bias of direction w
respect to the portion of the SAW already grown. On a re
lar lattice both DSAW’s and ODSAW’s can grow indefi
nitely. The ODSAW’s have an additional flexibility in grow
ing, since every DSAW is a ODSAW. In this paper, th
effect of randomness of the medium on these directed w
is studied.

It is believed that a change in universality occurs for t
ordinary SAW’s at strong disorder@2,6#. Directed SAW’s are
more restricted than ordinary SAW’s in general. It is th
interesting to study the effect of randomness of the med
on directed SAW’s. Kardar and Zhang@7# have indirectly
shown for the transverse fluctuation of the minimum-ene
paths on random energy landscapes that there is a chan
the scaling exponent from 1/2 to 2/3 in the zero-tempera
and strong-disorder limit. In a similar model, Cook and D
rida @8# performing a 1/d expansion andn-tree approxima-
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tion, were unable to find such a transition. Monte Carlo
sults of two directed SAW’s, described above, on infin
percolation clusters, are presented here for the first time.
change in exponent due to randomness of the lattice is
served. A slight swelling in the longitudinal direction and
crossover from shrinking to swelling in the transverse flu
tuation after certain steps of the walks are observed.
scaling function form of the extensions are tested throu
data collapse. The longitudinal extension scaling function
similar to that of the extension of ordinary SAW’s on ra
dom lattices.

There are two stages of the simulation. First, percolat
clusters for differentp values, including the percolation
thresholdpc'0.593, have been generated on the square
tice of size 2103210. The single cluster growth method@9# is
used to generate percolation clusters from the central sit
the lattice. Only the infinite or spanning clusters that conn
all opposite boundaries of the lattice are considered. Sec
the walks are generated as described in Fig. 1 on those
nite percolation clusters using a Monte Carlo~MC! tech-
nique. In a MC step in generating a walk, the numberns of
possible open paths is calculated for the next step and a
is selected with a probability 1/ns . Both the longitudinal
extensionRN and transverse fluctuationWN of the walks
have been measured with the number of stepsN ~length! of
the walks on random (p,1) and regular (p51) lattices. In
general, the quantitiesRN andWN are given by

FIG. 1. DSAW3~a! and ODSAW~b! on a regular square lattice
The ODSAW can not have any step towards itself. The step towa
the sites represented by an open circle in both~a! and ~b! are for-
bidden. If the ODSAW starts from the end then the stepX to Y is
also forbidden.
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 067101
RN~p!'A~p!Nn i(p), WN~p!'B~p!Nn'(p), ~1!

wheren i andn' are the corresponding exponents andA(p)
andB(p) are the amplitudes.

In generating a walk starting from a randomly chos
origin, periodic boundary conditions are applied in both
rections if the walk hits the boundary of the lattice. On t
regular (p51) square lattice 104 walks of N5106 steps are
generated. As randomness is introduced into the medium
indefinitely growing walks will be terminated because of t
irregularity of the medium. This may happen for two re
sons. First, a walk may terminate by hitting the dangli
ends at the outer boundary of a random cluster. Second
percolation clusters contain self-similar blobs connected
narrow necks@10# and the SAW’s may be confined or pa
tially localized in such blobs as the randomness of the clu
increases. To incorporate proper configurational avera
more and more random clustersC(p) are generated asp is
decreased from 0.9 to the percolation thresholdpc'0.593.
The values ofC(p)5200 for p50.9, C(p)5400 for p
50.8, C(p)5800 for p50.7, andC(p)51600 for p5pc
'0.593 are chosen. On each configuration 100 differ
walks are attempted from randomly chosen origins includ
the central site from which the cluster is grown. In to
1003C(p) walks are then grown for a particular value ofp.
Not all the walks perform the same number of steps o
random lattice. Counts of the number of walksnw(N) per-
formed up toN steps are kept and the averages are m
accordingly.

To measure the longitudinal extensionRN and the trans-
verse fluctuationWN of the walks on the regular and rando
lattices, the radius of gyration tensorT is calculated. For an
N-step walk thei j th component of the tensor is given by

Ti j ~N!5
1

N11 (
l 51

N11

~xli 2^xi&!~xl j 2^xj&!, ~2!

where thel th site is located atxl (N-step walks hasN11
sites!. The quantityxli is the i th component ofxl and^xi& is
the i th component of the center of mass position^xl&
5( l 51

N11xl /(N11). The root-mean-square values ofRN and
WN can be calculated from the largelL and smalllS eigen-
values of the radius of gyration tensorT, a 232 matrix here.
The extensions are thenRN5(k51

nw lLk /nw and WN

5(k51
nw lSk/nw . Note thatnw on the regular lattice is ar

ranged to be 104 regardless ofN.
Since both amplitude and exponent of the extension

Eq. 1 are functions ofp ~the randomness of the medium!, it
is then interesting to see how they are modified in rand
media. First, the scaling exponents related to the longitud
and transverse extensions are considered. The value o
longitudinal extension exponents for both the walks
known, i.e.,n i51 on the regular lattice. For DSAW3’s, thi
may be found in Ref.@3#. For ODSAW’s, it is obtained
through MC simulation by Turban and Debierre@4#, and it is
also recently tested through exact enumeration by Sa
et al. @5#. The transverse fluctuation exponent isn'51/2 for
DSAW3’s @3# on the regular lattice, so that DSAW3’s a
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anisotropic in nature. But the ODSAW’s treat all lattice d
rections equivalently and therefore are isotropic. Thus
ODSAW’s on the regular lattice, the value of the expone
n' should also be 1 in the asymptotic limitN→`. In the
numerical simulation for ODSAW’s of 106 steps, n' is
found '0.97, which is close to the expected value of
Since the exponentn' of ODSAW’s is different from that of
DSAW3’s, the ODSAW’s then belong to a new universali
class. It is expected that the value of the exponents sho
increase when the walks are performed in the random
dium. Since the value ofn i of both the walks andn' of
ODSAW’s are already equal to 1 on the regular lattice, th
is then no scope for increase the value of these exponen
the directed walks considered here in random media. O
the exponentn' of DSAW3’s could increase due to the ran
domness of the medium. In Fig. 2,WN for DSAW3’s is
plotted againstN, the number of steps, for different values
p to see how the disorder modifies the exponentn' . Data up
to N steps are considered in this plot~for p,1) such that at
least 103 walks have been sampled. The data for the regu
lattice ~circles! verify the scaling relation given in Eq.~1!.
For DSAW3’s,n' is found 1/2 as expected. Intriguingly it i
seen that the data for differentp values (p50.9 to p5pc
'0.593) follow the same curve as that of thep51 regular
lattice. Though the data forp,1 remains in the part of the
plots displaying curvature, the exponentn' for the
DSAW3’s seems to be the same for any value ofp. So the
universality, as well as the critical properties of the wa
remain unchanged even as the percolation threshold is
proached. This is an important observation and very differ
from the results obtained by Kardar and Zhang@7#, whose
model is, however, somewhat different. Kardar and Zha
considered the minimum-energy paths and not the zero
ergy paths on a landscape where the bond energies paral
the time axis are random and occupation of the perpendic
bonds costs a constant energy. The walks considered in

FIG. 2. Plot of transverse fluctuationWN of DSAW3’s versusN,
the number of steps, for different values ofp. Different symbols are
(s) for p51, (h) for p50.9, (n) for p50.8, (L) for p50.7,
and (3) for p50.593.
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BRIEF REPORTS PHYSICAL REVIEW E 63 067101
model are of zero energy. The associated energy with
empty sites of the percolation cluster is infinite and they
forbidden for the walker. In our model, all the possible wa
from a point A to a point B may be forbidden due to th
randomness of the lattice whereas in the Kardar and Zh
model there will be always a minimum-energy path conne
ing A andB. The results obtained by Kardar and Zhang m
be related to the particular model they have considered
connection to the domain wall boundary of the Ising sp
systems at zero temperature@11#.

Next, the variation of the amplitudesA(p) andB(p) are
considered in random media. Generally the amplitude of
dinary SAW’s increases or they swell in random media@2#
but it is not known how amplitudes of directed SAW’s b
have in random media. To understand the variation of
amplitudes of DSAW3’s and ODSAW’s in random media
measure is defined as the ratio of the amplitudes forp,1 to
that of p51. Since the exponentsn related toRN and WN
are independent ofp, the ratios of the amplitudes are the
r N5A(p,1)/A(p51)5RN(p,1)/RN(p51) for RN and
vN5B(p,1)/B(p51)5WN(p,1)/WN(p51) for WN . In
Fig. 3 the ratior N(p) is plotted against the number of ste
N for both the walks. It is observed thatr N(p).1 always for
any lengthN of the walks. There is then swelling of th
longitudinal extensionRN of these directed walks on the ran
dom lattices for all possible lengths of the walks. Howev
the swelling found is small, for strong disorder~at p5pc)
'8% to 9%. The ratiovN(p) of the transverse fluctuation
is plotted againstN in Fig. 4. Initially vN(p) is less than 1,
but it increases with the lengthN and becomes greater than
for long walks. For both the walks, there is then a crosso
from shrinking to swelling at a certain length of the walk
This is a new and interesting result. For DSAW3’s the cro
over is around 25 steps and in the case of ODSAW’s, i
around 13 steps. Thus there exists a crossover lengthNc of

FIG. 3. Plot ofvN(p)21 for ~a! DSAW3’s and~b! ODSAW’s
versus number of stepsN. Symbols are (s) for p50.9, (h) for
p50.8, (n) for p50.7, and (3) for p50.593. There is a cross
over from shrinking to swelling.
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the directed walks below which the swelling of the longit
dinal extension partially comes from the shrinking in t
transverse direction in a random medium. Since the perc
tion cluster contains self-similar blobs connected by narr
links, these short walks are confined either in those nar
links or within the blobs of size smaller than that crossov
lengthNc . One important length scale of the node-link-blo
model @12,10# of the percolation clusters is involved her
That is the distance between two nodes or the chemical
tanceLl . If a walk is shorter thanLl , then the walk will feel
the fractal nature of the percolation cluster strongly. As
consequence, a directed walk, elongated in a particular di
tion, will have less freedom in growing in a transverse dire
tion. But a long walk, longer thanLl as well as the correla
tion length ~shortest distance between the nodes!, could
diffuse over several blobs and swell in both directions. N
that the crossover lengthNc of two directed walks are dif-
ferent. This means that the diffusion of the directed walks
random lattices depends not only on the shape of the ran
cluster but also on the nature of the directed walks. A sho
walk of the highly flexible ODSAW’s than a walk of the
more restricted DSAW3’s could always find a path to diffu
from blob to blob. The drop ofvN(p) at pc for longer
lengths is possibly due to poor sampling. Only 8
DSAW3’s and 1742 ODSAW’s survive up to 40 steps out
163104 walks. Note that the swelling of ODSAW’s in bot
the directions are higher than that of DSAW3’s because
their high flexibility.

Finally, the scaling function forms ofRN and WN with
(p2pc) is verified. The chemical distance scales asLl;(p
2pc)

2zp with an exponentzp . Numerically the value ofzp
is obtained as 1.68 in two dimensions@13#. Hence, the lon-
gitudinal extensionRN of the walks on random lattice
should follow a scaling form

FIG. 4. Plot of RN(p)/RN(pc) for ~a! DSAW3’s and ~b!
ODSAW’s versus the scaled variableN(p2pc)

zp up to N525
steps. The value ofzp is taken 1.68. The symbols are: (s) for p
51, (h) for p50.9, (L) for p50.8, and (n) for p50.7.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 067101
RN;Nn ifR„N~p2pc!
zp
…, ~3!

where the scaled variable isN/Ll5N(p2pc)
zp. In Fig. 5,

RN(p)/RN(pc) is plotted against the scaled variableN(p
2pc)

zp up to N525 steps. It is expected that the da
RN(p)/RN(pc) should collapse on to a single curvefR for
any value ofN/Ll if fR(0) is a constant. First, note thatfR
approaches 1 as the scaled variableN(p2pc)

zp approaches
0. Second, a reasonable collapse of data is observed for
the walks, especially for ODSAW’s. The longitudinal exte
sion RN then follows the scaling function form given in Eq
~3!. Note that the data collapse should occur within the cr
cal regime of the percolation threshold. But here data fo
wide range of (p2pc) have been considered. The extensi

FIG. 5. Plot of RN(p)/N(pc) for (a) DSAW3s and (b)
ODSAWs versus the scaled variagleN(p2pc)

zp up to N525
steps. The value ofzp is taken 1.68. The symbols are: circles f
p51, boxes forp50.9, jdiamonds forp50.8 and triangles for
p50.7. A reasonable data collapse is observed for both the wa
06710
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of the ordinary SAW’s on random lattices follows the sam
scaling function form@2,14#. To find the scaling function
form for the transverse fluctuationWN of the directed walks
on random lattices one needs to introduce another len
scale on the percolation cluster. This new lengthLt must be
perpendicular to the chemical distanceLl and could be con-
sidered as the cross section of the links. In two dimension
is reasonable to assume thatLtLl is constant. The transvers
lengthLt then scales asLt;(p2pc)

hp, wherehp5zp . The
existence of the crossover lengthNc can also be understoo
in terms of the transverse lengthLt . As p→pc , Lt tends to
zero, i.e., the links are connected by single bonds. In
regime the shorter walks are typically confined within t
isolated blobs or in the narrow necks. A scaling form ofWN
thus can be written asWN;Nn'fW„(p2pc)

hp/N… where the
scaled variable isLt /N. The behavior ofWN(p)/WN(pc) is
studied as a function of the scaled variableLt /N for hp
5zp51.68 and also for other different values ofhp . But no
collapse of data on to a single curvefW is found for a wide
range ofhp . This may be due to an incorrect scaling for
assumed for the transverse lengthLt or due to an important
correction to scaling. To resolve this, one could study
scaling ofLt with (p2pc) on the percolation cluster itself.

In summary, the longitudinal extensionRN and the trans-
verse fluctuationWN of two directed self-avoiding walks
DSAW3’s and ODSAW’s, on random lattices in two dime
sions have been studied. There is some swelling of the
gitudinal extensionRN on the random lattices. The transver
fluctuationsWN show a crossover from shrinking to swellin
at a certain lengthNc of the walks. The exponentn'51/2 for
DSAW3’s seems to be independent of the randomness~p! of
the lattice. There is then no change in the scaling expon
in random media except a little swelling or shrinking in the
size depending on the length of the walks. The scaling fu
tion form of the longitudinal extension of these direct
SAW’s is verified and it is similar to that of the ordinar
SAW’s on random lattices.

The authors thank the Welch Foundation, Houston, Te
for financial support.
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