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Directed self-avoiding walks in random media
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Two types of directed self-avoiding walKSAW'’s), namely, three-choice directed SAW and outwardly
directed SAW, have been studied on infinite percolation clusters on the square lattice in two dimensions. The
walks on the percolation clusters are generated via a Monte Carlo technique. The longitudinal eXxRgnsion
and the transverse fluctuatiddy have been measured as a function of the number of $teftight swelling
is observed in the longitudinal direction on the random lattices. A crossover from shrinking to swelling of the
transverse fluctuations is found at a certain lengthof the walks. The exponents related to the transverse
fluctuations are seen to be unchanged in the random media even as the percolation threshold is reached. The
scaling function form of the extensions are verified.
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Directed polymers in random environments have versatilgion, were unable to find such a transition. Monte Carlo re-
applications ranging from growing interfaces to spin glassesults of two directed SAW'’s, described above, on infinite
to flux lines in highT. superconductors. The equilibrium percolation clusters, are presented here for the first time. No
properties of linear polymers are well-studied using self-change in exponent due to randomness of the lattice is ob-
avoiding walk (SAW) models[1]. Properties of SAW’s on served. A slight swelling in the longitudinal direction and a
random lattices have also been studied extensil2]yDi- crossover from shrinking to swelling in the transverse fluc-
rected polymers are studied using directed SAW modelstuation after certain steps of the walks are observed. The
Two different directed self-avoiding walkBSAW's), three-  scaling function form of the extensions are tested through
choice directed self-avoiding walkDSAW3's) [3], and out-  data collapse. The longitudinal extension scaling function is
wardly directed self-avoiding walklODSAW'’s) [4,5], are similar to that of the extension of ordinary SAW’s on ran-
considered here in random media in two dimensions. Figurdom lattices.

1(a) represents the DSAW3, and Fig(bl represents the There are two stages of the simulation. First, percolation
ODSAW, on the regular square lattice. There is considerablglusters for differentp values, including the percolation
earlier study of DSAW3'§3]. The ODSAW of Fig. 1b) is thresholdp.~0.593, have been generated on the square lat-
less well studied and is imagined to be grown step-by-stefice of size 2°x2%°. The single cluster growth meth¢f] is
such that no step is taken in a direction towards a site alreadysed to generate percolation clusters from the central site of

visited. In Fig. 1b), the step to the site represented by anthe lattice. Only the infinite or spanning clusters that connect
open circle is not allowed. Hence ODSAW's are “self- all opposite boundaries of the lattice are considered. Second,

repelling.” If the origin of the walk is changed from the the walks are generated as described in Fig. 1 on those infi-

starting point to the end point, the walk may not satisfy thehite percolation clusters using a Monte Ca(MC) tech-

self-repelling conditiofstep fromX to Y in Fig. 1(b) is not ~ nique. In a MC step in generating a walk, the numbgof

allowed when it starts from the ehdt is then an irreversible possible open paths is calculated for the next step and a step

walk whereas DSAW'’s generally are not. DSAW'’s have ais selected with a probability a/. Both the longitudinal

bias of a fixed direction with respect to the embedded spac&xtensionRy and transverse fluctuatiow/ of the walks

whereas ODSAW’s have a weaker bias of direction withhave been measured with the number of stegtength of

respect to the portion of the SAW already grown. On a reguthe walks on randomp<1) and regular |j=1) lattices. In

lar lattice both DSAW’s and ODSAW'’s can grow indefi- general, the quantitieBy and Wy are given by

nitely. The ODSAW'’s have an additional flexibility in grow-

ing, since every DSAW is a ODSAW. In this paper, the RO Sieg M |

effect of randomness of the medium on these directed walks ) )

is studied. Y
It is believed that a change in universality occurs for the H ? | S L

ordinary SAW'’s at strong disord¢?,6]. Directed SAW's are e e--

more restricted than ordinary SAW'’s in general. It is then X

interesting to study the effect of randomness of the medium

on directed SAW's. Kardar and Zhan@] have indirectly (@ ®)

shown for the transverse fluctuation of the minimum-energy FiG. 1. DSAW3(a) and ODSAW(b) on a regular square lattice.

paths on random energy landscapes that there is a changetRe ODSAW can not have any step towards itself. The step towards

the scaling exponent from 1/2 to 2/3 in the zero-temperaturénhe sites represented by an open circle in Hathand (b) are for-

and strong-disorder limit. In a similar model, Cook and Der-bidden. If the ODSAW starts from the end then the skef Y is

rida [8] performing a 1d expansion andh-tree approxima- also forbidden.
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Ry(P)~A(p)N"IP) . Wy (p)~B(p)N": P, (1) ' '

wherev andv, are the corresponding exponents ak(g) 25 - o 1
andB(p) are the amplitudes.
In generating a walk starting from a randomly chosen I °
origin, periodic boundary conditions are applied in both di- O(g&)
rections if the walk hits the boundary of the lattice. On the 1.5 | o .
regular p=1) square lattice Yowalks of N=1CP steps are -
generated. As randomness is introduced into the medium the up
indefinitely growing walks will be terminated because of the 2
irregularity of the medium. This may happen for two rea- 05 -
sons. First, a walk may terminate by hitting the dangling
ends at the outer boundary of a random cluster. Second, the
percolation clusters contain self-similar blobs connected by
narrow neckg10] and the SAW’s may be confined or par-

WN

tially localized in such blobs as the randomness of the cluster 0.5 0 2 4 6
increases. To incorporate proper configurational averages logION

more and more random cluste€{p) are generated gsis

decreased from 0.9 to the percolation threshmle-0.593. FIG. 2. Plot of transverse fluctuatiohly of DSAW3's versus\,

The values ofC(p)=200 for p=0.9, C(p)=400 for p  the number of steps, for different valuespMDifferent symbols are
=0.8, C(p)=800 for p=0.7, andC(p)=1600 forp=p, (O) for p=1, (O) for p=0.9, (A) for p=0.8, (¢) for p=0.7,
~0.593 are chosen. On each configuration 100 differengnd (x) for p=0.593.
walks are attempted from randomly chosen origins including
the central site from which the cluster is grown. In total anisotropic in nature. But the ODSAW's treat all lattice di-
100X C(p) walks are then grown for a particular valuemf rections equivalently and therefore are isotropic. Thus for
Not all the walks perform the same number of steps on &DSAW'’s on the regular lattice, the value of the exponent
random lattice. Counts of the number of walkg(N) per- v, should also be 1 in the asymptotic linlt—c. In the
formed up toN steps are kept and the averages are madsumerical simulation for ODSAW's of fOsteps, v, is
accordingly. found ~0.97, which is close to the expected value of 1.
To measure the longitudinal extensi®y and the trans- Since the exponent, of ODSAW's is different from that of
verse fluctuatiotwy, of the walks on the regular and random DSAW3'’s, the ODSAW'’s then belong to a new universality
lattices, the radius of gyration tens®ris calculated. For an class. It is expected that the value of the exponents should
N-step walk the j th component of the tensor is given by  increase when the walks are performed in the random me-
dium. Since the value ofy of both the walks andv, of
ODSAW's are already equal to 1 on the regular lattice, there
Tii(N) =371 lZ (X5 = (X)) (% = (%)), (2)  is then no scope for increase the value of these exponents of
o the directed walks considered here in random media. Only
the exponen, of DSAW3's could increase due to the ran-
domness of the medium. In Fig. Vy for DSAW3's is
plotted againsN, the number of steps, for different values of
p to see how the disorder modifies the exponent Data up
to N steps are considered in this plédr p<<1) such that at
least 18 walks have been sampled. The data for the regular

N+1

where thelth site is located ak, (N-step walks hadN+1
siteg. The quantityx;; is theith component ok; and(x;) is
the ith component of the center of mass positiox)
=3N"1% /(N+1). The root-mean-square valuesRy§ and
W)y can be calculated from the large and small\ 5 eigen-

values of the radius of gyration tensbya 2X 2 matrix here. lattice (circles verify the scaling relation given in Edd).

. n
The extensions are therRy=2,% N/ and Wy por psaw3's, v, is found 1/2 as expected. Intriguingly it is
=3 ™ \s/ny,. Note thatn, on the regular lattice is ar- seen that the data for differeptvalues p=0.9 to p=p;
ranged to be 1Dregardless oN. ~0.593) follow the same curve as that of the1 regular
Since both amplitude and exponent of the extensions imattice. Though the data fqu<1 remains in the part of the
Eqg. 1 are functions op (the randomness of the mediynit plots displaying curvature, the exponent, for the
is then interesting to see how they are modified in randonDSAW3's seems to be the same for any valuepofo the
media. First, the scaling exponents related to the longitudinalniversality, as well as the critical properties of the walk,
and transverse extensions are considered. The value of themain unchanged even as the percolation threshold is ap-
longitudinal extension exponents for both the walks areproached. This is an important observation and very different
known, i.e.,yj=1 on the regular lattice. For DSAW3's, this from the results obtained by Kardar and Zhdiig whose
may be found in Ref[3]. For ODSAW's, it is obtained model is, however, somewhat different. Kardar and Zhang
through MC simulation by Turban and Debiefrd, and itis  considered the minimum-energy paths and not the zero en-
also recently tested through exact enumeration by Santrargy paths on a landscape where the bond energies parallel to
et al. [5]. The transverse fluctuation exponentis=1/2 for  the time axis are random and occupation of the perpendicular
DSAWS3's [3] on the regular lattice, so that DSAW3's are bonds costs a constant energy. The walks considered in our
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FIG. 3. Plot ofwy(p) —1 for (9 DSAW3's and(b) ODSAW's FIG. 4. Plot of Ry(p)/Rn(pc) for (@) DSAW3's and (b)

versus number of stegdd. Symbols are ©) for p:0.9,_ @) for ODSAW's versus the scaled variabN(p—p,)% up to N=25
p=0.8, (4) for p=0.7, and () for p=0.593. There is a cross- steps. The value of, is taken 1.68. The symbols areDj for p
over from shrinking to swelling. =1, (O) for p=0.9, (¢) for p=0.8, and () for p=0.7.

model are of zero energy. The associated energy with thge girected walks below which the swelling of the longitu-
empty sites of the percolation cluster is infinite an.d they ar&yinal extension partially comes from the shrinking in the
forbidden for the walker. In our model, all the possible Walkstransverse direction in a random medium. Since the percola-

from a pointA to a pointB may be_forbldden due to the tion cluster contains self-similar blobs connected by narrow
randomness of the lattice whereas in the Kardar and Zhan ) ; .
Ithks, these short walks are confined either in those narrow

model there will be always a minimum-energy path connects. o .
ing A andB. The results obtained by Kardar and Zhang ma inks or within the blobs of size smaller than that crossover
be related to the particular model they have considered itffN9thNc. One important length scale of the node-link-blob
connection to the domain wall boundary of the Ising spinmc’de_l [12,1(]_ of the percolation clusters is mvolved_here._
systems at zero temperatJL]. That is the distance between two nodes or the chemical dis-
Next, the variation of the amp“tudqs(p) and B(p) are tanceL| . If a Walk iS ShOI’ter thalll| y then the Wa.lk W|” feel
considered in random media. Generally the amplitude of orthe fractal nature of the percolation cluster strongly. As a
dinary SAW'’s increases or they swell in random meld@a ~ consequence, a directed walk, elongated in a particular direc-
but it is not known how amplitudes of directed SAW’s be- tion, will have less freedom in growing in a transverse direc-
have in random media. To understand the variation of thdion. But a long walk, longer thah, as well as the correla-
amplitudes of DSAW3’s and ODSAW's in random media, ation length (shortest distance between the ngdesould
measure is defined as the ratio of the amplitudepfod to  diffuse over several blobs and swell in both directions. Note
that of p=1. Since the exponents related toRy and Wy that the crossover lengtN. of two directed walks are dif-
are independent of, the ratios of the amplitudes are then ferent. This means that the diffusion of the directed walks on
rn=A(p<1l)/A(p=1)=Ry(p<1)/Ry(p=1) for Ry and random lattices depends not only on the shape of the random
ony=B(p<1)/B(p=1)=Wy(p<1)/Wy(p=1) for Wy. In  cluster but also on the nature of the directed walks. A shorter
Fig. 3 the ratior y(p) is plotted against the number of steps walk of the highly flexible ODSAW’s than a walk of the
N for both the walks. It is observed thgj(p)>1 always for  more restricted DSAW3'’s could always find a path to diffuse
any lengthN of the walks. There is then swelling of the from blob to blob. The drop ofwy(p) at p. for longer
longitudinal extensiomRy of these directed walks on the ran- lengths is possibly due to poor sampling. Only 806
dom lattices for all possible lengths of the walks. HoweverDSAW3's and 1742 ODSAW'’s survive up to 40 steps out of
the swelling found is small, for strong disord@t p=p.) 16x 10" walks. Note that the swelling of ODSAW'’s in both
~8% to 9%. The ratiavy(p) of the transverse fluctuations the directions are higher than that of DSAW3's because of
is plotted againsN in Fig. 4. Initially wy(p) is less than 1, their high flexibility.
but it increases with the lengti and becomes greater than 1~ Finally, the scaling function forms dRy and Wy with
for long walks. For both the walks, there is then a crossove(p—p.) is verified. The chemical distance scalesLas (p
from shrinking to swelling at a certain length of the walks. —p.) ~ ¢ with an exponent,. Numerically the value o,
This is a new and interesting result. For DSAW3's the crossis obtained as 1.68 in two dimensiofik3]. Hence, the lon-
over is around 25 steps and in the case of ODSAW's, it iggitudinal extensionRy of the walks on random lattices
around 13 steps. Thus there exists a crossover ledgthf  should follow a scaling form
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FIG. 5. Plot of Ry(p)/n(p:.) for (a) DSAW3s and b)
ODSAWSs versus the scaled variagh(p—pc)’ up to N=25
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of the ordinary SAW’s on random lattices follows the same
scaling function form[2,14]. To find the scaling function
form for the transverse fluctuatiofvy of the directed walks

on random lattices one needs to introduce another length
scale on the percolation cluster. This new lenigthmust be
perpendicular to the chemical distariceand could be con-
sidered as the cross section of the links. In two dimensions it
is reasonable to assume that, is constant. The transverse
lengthL, then scales ak;~(p—p.) ", wheren,={,. The
existence of the crossover length can also be understood
in terms of the transverse length. As p—p., L; tends to
zero, i.e., the links are connected by single bonds. In this
regime the shorter walks are typically confined within the
isolated blobs or in the narrow necks. A scaling form/gg
thus can be written ag/y~ N"+f((p—pc) 7?/N) where the
scaled variable it ;/N. The behavior ofVy(p)/Wn(pe) is
studied as a function of the scaled variallg/N for 7,
={,=1.68 and also for other different values gf. But no
collapse of data on to a single curfg is found for a wide
range ofz,. This may be due to an incorrect scaling form
assumed for the transverse lengthor due to an important
correction to scaling. To resolve this, one could study the

steps. The value of, is taken 1.68. The symbols are: circles for scaling ofL, with (p—p.) on the percolation cluster itself.

p=1, boxes forp=0.9, jdiamonds forp=0.8 and triangles for

In summary, the longitudinal extensié) and the trans-

p=0.7. Areasonable data collapse is observed for both the walksyerse fluctuationW), of two directed self-avoiding walks,

Ry~ NIfr(N(p—pc)P), ©)

where the scaled variable N/L,=N(p—pg)*. In Fig. 5,
Rn(pP)/Ru(pe) is plotted against the scaled varia{p

—po)ér up to N=25 steps. It is expected that the data

Rn(p)/Rn(pe) should collapse on to a single curfg for
any value ofN/L, if fz(0) is a constant. First, note thit

approaches 1 as the scaled varialilg— p.) ‘P approaches

DSAWS3’s and ODSAW'’s, on random lattices in two dimen-
sions have been studied. There is some swelling of the lon-
gitudinal extensiorRy on the random lattices. The transverse
fluctuationswWy show a crossover from shrinking to swelling
at a certain lengthl; of the walks. The exponent, =1/2 for
DSAW3's seems to be independent of the random(@ssf

the lattice. There is then no change in the scaling exponents
in random media except a little swelling or shrinking in their
size depending on the length of the walks. The scaling func-

0. Second, a reasonable coIIapse, of data is observed for bofy, form of the longitudinal extension of these directed
the walks, especially for ODSAW's. The longitudinal exten- saw's is verified and it is similar to that of the ordinary
sion Ry then follows the scaling function form given in Eq. saw’s on random lattices.

(3). Note that the data collapse should occur within the criti-

cal regime of the percolation threshold. But here data for a The authors thank the Welch Foundation, Houston, Texas
wide range of p—p.) have been considered. The extensionfor financial support.
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